Application classification using packet size distribution and port association
نویسندگان
چکیده
Traffic classification is an essential part in common network management applications such as intrusion detection and network monitoring. Identifying traffic by looking at port numbers is only suitable to well-known applications, while signature-based classification is not applicable to encrypted messages. Our preliminary observation shows that each application has distinct packet size distribution (PSD) of the connections. Therefore, it is feasible to classify traffic by analyzing the variances of packet sizes of the connections without analyzing packet payload. In this work, each connection is first transformed into a point in a multi-dimensional space according to its PSD. Then it is compared with the representative points of pre-defined applications and recognized as the application having a minimum distance. Once a connection is identified as a specific application, port association is used to accelerate the classification by combining it with the other connections of the same session because applications usually use consecutive ports during a session. Using the proposed techniques, packet size distribution and port association, a high accuracy rate, 96% on average, and low false positive and false negative rates, 4–5%, are achieved. Our proposed method not only works well for encrypted traffic but also can be easily incorporated with a signature-based method to provide better accuracy. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Feature Extraction to Identify Network Traffic with Considering Packet Loss Effects
There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...
متن کاملBehavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملBlind application recognition through behavioral classification
Application recognition appears to be an important task for a large number of applications in security and traffic engineering. Well-known port numbers can no longer be used to reliably identify network applications. There is a variety of new Internet applications that either do not use wellknown port numbers or use other protocols, such as HTTP, as wrappers in order to go through firewalls wit...
متن کاملInternet Application Traffic Classification Using Fixed IP-Port
As network traffic is dramatically increasing due to the popularization of Internet, the need for application traffic classification becomes important for the effective use of network resources. In this paper, we present an application traffic classification method based on fixed IP-port information. A fixed IP-port is a {IP, protocol, port} triple dedicated to only one application, which is au...
متن کاملDesign and Construction of an Aerosol Particle Classification System Based on Electrical Mobility
Introduction: The application of particles’ electrical mobility in the electric field has always been an important concern, as the functional basis of a number of particle measuring and classification instrumentations. The objective of this study was to design and construct an aerosol particles classification system using electrical mobility feature in laboratory scale. Methodology: This labo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Network and Computer Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2009